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Abstract

We study a finite-difference discretization of an ill-posed nonlinear parabolic par-
tial differential equation. The PDE is the one-dimensional version of a simplified
two-dimensional model for the formation of shear bands via anti-plane shear of a
granular medium. For the discretized initial value problem, we derive analytically,
and observed numerically, a two-stage evolution leading to a steady-state: (i) an
initial growth of grid-scale instabilities, and (ii) coarsening dynamics. Elaborating
the second phase, at any fixed time the solution has a piecewise linear profile with
a finite number of shear bands. In this coarsening phase, one shear band after an-
other collapses until a steady-state with just one jump discontinuity is achieved.
The amplitude of this steady-state shear band is derived analytically, but due to
the ill-posedness of the underlying problem, its position exhibits sensitive depen-
dence. Analyzing data from the simulations, we observe that the number of shear
bands at time ¢ decays like t~1/3. From this scaling law we show that the time-scale
of the coarsening phase in the evolution of this model for granular media critically
depends on the discreteness of the model.

Our analysis also has implications to related ill-posed nonlinear PDEs for the one-
dimensional Perona-Malik equation in image processing and to models for clustering
instabilities in granular materials.
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1 Introduction

The degenerate parabolic PDE,

ov ) Vv
E—dlv <R\Vv\> ) (1.1)

in which R is a rotation matrix, arises from a simplified model of the velocity field of a
sheared granular material [33]. This equation is ill-posed, a property typical of continuum
models of granular media [25,31,32,34]. To study the dynamics of this model, in this paper
we analyze finite difference approzimations of the PDE (1.1). More precisely, we discretize
in space, and study the resulting system of ODEs, which we refer to as the discrete model.
This model is a form of regularization of (1.1); the discrete model is well-posed, mollifying
instabilities at the highest frequencies.

The simulations show that amplification of perturbations at short wavelengths lead quickly
to small-amplitude discontinuities, see Figure 1b. This short time behavior is followed by
a gradual coarsening and long time evolution to a steady state. The steady state has a
single discontinuity that we refer to as a shear band [9], see Figure 1c. The time-scale for
the coarsening dynamics phase of the evolution diverges as the mesh scale Az tends to
zero. Thus, strictly speaking, in the continuum limit, no evolution occurs! In other words,
the discreteness of the finite difference model is essential to the dynamics of this system.
Implications of this result for granular flows will be discussed further in a subsequent paper.

The behavior of this nonlinear ill-posed equation should be contrasted with the behavior of
ill-posed linear equations where short wavelength disturbances are simply amplified catas-
trophically. Correspondingly, solutions of difference approximations of linear ill-posed equa-
tions diverge in every norm, as the mesh spacing approaches zero. For our discrete model
of (1.1), as Az — 0, the sequence of solutions of the difference equations converges in L?,
but because of ill-posedness it blows-up in H'. The divergence in H' is a consequence of the
very rapid development of “infinitesimal discontinuities” in the solution. These observations
on the dynamics in the system are fully developed in Section 6.

The linear ill-posedness of the time-dependent equations is related to the property that
the steady-state equations are hyperbolic. The steady-state equations are well-known to
support shock waves [22]. In nonlinear continuum descriptions of granular materials linear
ill-posedness means that initial value problems are sensitive to small perturbations, but it
also provides a mechanism for the formation of fine-scale localized structures such as shear
bands and shocks.

PDE models for granular flow are the result of treating the material as a continuum, allowing
dynamics at all wavelengths, whereas in fact wavelengths much shorter than the grain size of
particles in the granular media have no physical significance. Regarding the finite difference
mesh parameter as being on the order of the grain size, we effectively replace the continuum
description by a discrete model that may more faithfully represent the range of wavelengths
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Fig. 1. One-dimensional evolution in (1.1); (a) initial data, (b) short time behavior, (c) long-time
evolution to the steady-state shear band.

relevant for granular flow. The discrete model is analogous to discrete mechanical models
whose continuum limit yields a continuum description, as has been used in constructing
continuous models of high density discrete mechanical systems [26-28].

Ill-posed nonlinear parabolic equations also arise in population dynamics in mathematical
biology [21,23], edge enhancement in image processing [2,5,8,20], and other problems in
granular media flows [10,19,35]. Since the early work of Perona and Malik [24], ill-posed
nonlinear diffusion equations have been used to produce enhancement of edges in digitized
images by selective amplification of intensity gradients via backward diffusion. These models
have attracted a lot of attention in the engineering and mathematical literature [20], and
there are still many mathematical open questions. While (1.1) has a very different motivation
than the Perona-Malik models, it shares many structural similarities, and some of our results
may have further implications for image processing. Recent studies [10,35] of clustering
instabilities (also called inelastic collapse) in dilute granular gases [19] have yielded models
with non-monotone flux functions and discrete diffusive coupling in space. The discrete model
considered here has some qualitative features similar to the clustering dynamics observed in
those papers.

1.1 Outline of paper

The remainder of this paper is organized as follows. In Section 2 we formulate the PDE
model in one and two space dimensions, and give preliminary information concerning the
discrete model. Specifically, in Section 2.1, we discuss the PDE in the context of anti-plane
shear, and specify the nature of the linear ill-posedness. In Section 2.2, we consider plane
wave perturbations of uniform shear. We show that the resulting PDE in one space variable
and time has the character of a backward-forward heat equation. In Section 2.3, we write
down the discrete model, and show that solutions remain bounded globally in time, and
uniformly in mesh spacing Azx.

In Section 3, we describe all equilibrium solutions of the discrete model. Apart from the
trivial solution, corresponding to uniform shearing, equilibrium solutions have one or more
finite jumps (that persist under mesh refinement), which we call shocks or shear bands. In
Section 4, we show that the trivial solution and single shear band solutions are the only



possible stable equilibria. We characterize precise conditions under which these equilibria
are in fact stable. Multiple shock solutions are shown to be unstable, a property that helps
explain the coarsening exhibited in Figure 1. The proof is based on identifying a Liapunov
function for the discrete model, and exploring the nature of it’s critical points.

In Section 5, we describe detailed dynamic simulations like those of Figure 1. In Section 6,
we discuss the continuum limit Ax — 0, demonstrating the existence, via numerical experi-
ments, of a scaling law for the evolution of shear bands in the coarsening process. Finally, in
Section 7, we analyze the coarsening that occurs in the intermediate dynamics. Specifically,
in Section 7.1, we analyze the coarsening from a solution with K shocks to a solution with
K — 1 shocks, when K is large. In Section 7.2, we formulate a reduced discrete model that
describes the evolution of the shocks in isolation from the smooth part of the solution. The
comparison of predictions from the reduced model and the full model helps to justify our
explanation of how the coarsening process takes place.

2 Formulation of the problem
2.1 The continuous two-dimensional model

The dependent variable v = v(z,y,t) in equation (1.1) may be thought of as the velocity
in the z-direction in a block of material undergoing anti-plane shearing. The equation for
conservation of momentum equates acceleration, d;v, at constant density (normalized to
unity) with the divergence of stress, V - 7. Modeling stress by the vector 7 = RVv/|Vu|, in
which R is the matrix representing a rotation counterclockwise through a constant angle «,

cos o —sin«
R = , (2.1)

sin o Ccos

with 0 < o < /2, we arrive at equation (1.1). This model and related equations are studied
in a series of papers [3,4,6,13,12,25,31,32,34]. Further details relating this constitutive relation
to the full stress tensor and to properties of a perfectly plastic material are given in [33].
Equation (1.1) is a special case of the model in [33] subject to constant yield strength,
specifically |7| = 1.

The following proposition, adapted from [33], identifies the ill-posedness exhibited by (1.1).
Consider a specific solution vy(x,y,t) of (1.1). If we linearize the equation about v, and
freeze coefficients of the linearized equation at a point (xg, 3o, %), the resulting equation
admits solutions in the form exp{At + i(&1z + &y)}. The equation relating A to £= (&1,&9)
is the dispersion relation for the linear equation. For this equation, A is real, and we say the
equation is #ll-posed if A is not uniformly bounded above in E The proposition describes the
nature of this ill-posedness, identifying a wedge of directions { within which X is positive



and unbounded, approaching infinity quadratically in f

Proposition 1 A solution vy(z,y,t) of (1.1) is linearly ill-posed in a neighborhood of (o, Yo, to)
with respect to the exponential perturbation exp{i(&1x + &y)} if € (or =€) lies in the sector

=

arg(Vuy) < arg(§) < arg(Vuy) + « (2.2)

where

arg(Vug) = arctan <3yvo(g;0, Yo, to)> .

Oz (20, Yo, to)

Note that the upper bound in (2.2) is the argument of the rotated gradient vector, arg(RVuvg) =
arg(Vuy) + a.

Proof: Using the summation convention, we write out (1.1) as

1
dv = Rjk {ajakv — @ alv 8]-8;1)} . (23)

ot |V Vol [Vl
Substitute
v =wo(x,y,t) + e lEr2TEY) A

into (2.3), equate terms of order €, and freeze coefficients. Then, writing

—

ME) = A(€) + O(18))

to extract the principal part in the growth rate!, we calculate that

M(E) = |8 cosa — (R, €)(@,€) = (@x £) - (R x €) (2.4)

where (-, -) denotes the Euclidean inner product and @ = Vuy/|Vup|. The second equality in
(2.4) is a consequence of Lagrange’s vector identity and yields the growth rate in terms of
vector dot and cross products. Observe that A, vanishes if 5_' is parallel to @ or Rad. A nonzero,
homogeneous quadratic form such as (2.4) can vanish along only two directions. Therefore
Ap(€) cannot change sign within the wedge (2.2). We may see that \,(§) is positive in this
wedge, and negative outside it, by observing that on the circle {|€] = 1}, the first term in
(2.4) is constant while the second term assumes its maximum where the circle intersects the
line that bisects the wedge, {arg€ = arg@ + «/2}. m

As may be seen from the proof, the two angles that bound the wedge (2.2) represent char-
acteristic directions in the (z,y)-plane of the steady-state equation

div <R|§Z|> = 0; (2.5)

1 Note that if vo(z,y) is an equilibrium solution of (1.1), then A = ),, i.e. the exponential growth
rate equals the principal part.



consequently, the steady state equation is hyperbolic.

For the special case of a = 0, the rotation matrix in (1.1) becomes the identity, R = I, and
(1.1) has a functional that is monotone decreasing (subject to natural boundary conditions),

E= / Vo) dz dy, ‘ii—f - —/ [aiv (2] dzdy < 0. (2.6)
This special case is related to models for geometric motion by mean curvature [11]. Gen-
eralizations of geometric evolution equations have been considered in the field of image
processing [2,5,8,20]. These latter models, generally called Perona-Malik equations [24], are
based on a different class of generalizations than (1.1); however, we will show that they share
some important properties. For (1.1) with 0 < a < 7/2 there is no decreasing functional
corresponding to (2.6). However, we shall identify a Liapunov function for one-dimensional
solutions.

2.2 The continuous one-dimensional model

For any nonzero @ = (a1, as)” € R2, the linear function
v(z,y) = a1z + azy (2.7)

is a solution of the steady-state equation (2.5), one which describes uniform shearing. In this
paper we study only one-dimensional perturbations of (2.7), i.e. solutions of the form

’U(l‘, yat) =T + ay + ’LU(JC, t) (28)

Without loss of generality, throughout this paper we take |@| = 1 in (2.8), and for simplicity
we take advantage of rotational invariance of the equation (1.1) to make the one-dimensional
perturbation be in the z-direction. Observe that for functions of this form d,v = as; thus,
provided that ay # 0, Vv will never vanish, thereby avoiding the singularity in (1.1). This
ansatz is motivated partly by having observed such one-dimensional solutions as the large-
time limit of two-dimensional simulations of (1.1) and partly by our desire, in this initial
investigation of ill-posed problems, to work in a context where much of the behavior can be
derived rigorously.

To examine ill-posedness of the one-dimensional problem, suppose that w(z,t) in (2.8) is an
exponential, w = e%1¥*M_ Since Vvy = @ and arg £ = 0, (2.2) may be simplified to show that
one-dimensional perturbations of the steady-state solution (2.7) are ill-posed if

—a < argd < 0. (2.9)

For contrast, if —7m < argd < —a or if 0 < argd < 7™ — «, then (2.7) is well-posed in the
one-dimensional context. In this respect, the one-dimensional problem differs greatly from



Fig. 2. The nonlinear flux function F(s) for 0 < ¢ < a (Case 1).

the two-dimensional problem: (1.1) is always ill-posed when plane waves in all directions are
allowed as perturbations of (2.7).

On substitution of (2.8) into (1.1), we obtain

ow 0

9% _ 2 (p(w,), (210)
where
F(s) = <RT€1, éi%;& (2.11)
here RT is the transpose (and inverse) of (2.1), and & = (1,0)%. Recalling that |@| = 1, we
define an angle ¢ = — argd (note the minus sign), so
@ = (cos ¢, —sin ¢)T; (2.12)

without loss of generality we restrict ¢ to the range 0 < ¢ < 7. We shall consider (2.10) on
the interval 0 < x < 1 and impose homogeneous Dirichlet boundary conditions on w,

w(0,t) =0, w(l,t) =0. (2.13)

In terms of the two-dimensional PDE (1.1), we are seeking a solution on the vertical strip =
{(z,y) € [0,1] x R} of the particular form (2.8) satisfying boundary conditions v(0,y,t) =
azy, and v(1,y,t) = a; + agy. It is interesting to note that in the cases ¢ = 0 and ¢ = «,
the boundary of 2 is characteristic for the steady-state problem (2.5). Incidentally, the case
of periodic boundary conditions for (2.10), i.e. w(1 + z,t) = w(z,t), is also covered by our
analysis apart from a possible nonzero mean value for w(z).

The properties of PDE (2.10) depend on the form of the nonlinear flux function F(s). Using



(2.12), in terms of ¢, (2.11) can be rewritten

_ cos(a—¢)+ scosa
~ V1+2scosp+s2°

F(s) (2.14)

Figure 2 shows a graph of F'(s) for one choice of o and ¢. Note that, for every choice of «
and ¢, F(s) is a bounded function for all s, taking values in the range —cosa < F(s) <1,
with the lower bound approached as s = —oc. As s — oo,

sin o sin ¢

F(s) =cosa+ +0(s72). (2.15)
s
The upper limit, F'(s) = 1, is achieved at Smax, the unique maximum of F', where the two
vectors in the inner product (2.11) are parallel: i.e., arg(@+ Smax€1) = —«. This critical point
is given by
Smax = —sin(a — ¢)/sin o (2.16)

This point separates the two intervals (—00, Smax) and (Smax, o), where F(s) is monotone
increasing and decreasing, respectively.

Differentiating the one-dimensional equation (2.10) with respect to z, we obtain a nonlinear
diffusion equation for the slope s(z,t) = w,(z,t),

dos  0? Os 0 Os
2 -2 (F — = — [ D(s)=— 2.17

o= am(FB) o =g ( (5) ax> ’ (2.17)
where D(s) = F'(s) is the nonlinear diffusion coefficient. For s < spax, D(s) > 0 and
hence (2.17) is a linearly well-posed nonlinear forward diffusion equation, while for s > spax,
D(s) < 0 and (2.17) is a linearly ill-posed backward diffusion equation (see Figure 3b). We
observe that for F'(s) given by (2.14), the corresponding diffusion coefficient is

sin asin ¢

D(s) = — (5 250059 1 27 (8 — Smax)- (2.18)

The one-dimensional Perona-Malik equation [20], w; = (p(w2)wy)s, is of the form (2.17),
with F(w;) = p(w?)w,. For this equation, F'(s) = p(s?) + 2p'(s?)s* also becomes negative
at large s for appropriate functions p(s?) of interest [20].

Equation (2.10) has the Liapunov function
1
L= / V(w)dz  where  V(s)= / F(s)ds. (2.19)
0

Subject to Dirichlet or other appropriate boundary conditions, the Liapunov function is
monotone decreasing, with its evolution given by

¥ [ PPz <o (2:20)
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Fig. 3. The nonlinear flux function F(s) and the corresponding nonlinear diffusion coefficient
D(s) = F'(s) for ¢ > 2a (Case 3).

Up to an additive constant, the anti-derivative of F'(s) in (2.14) is given by

V(s) =sinasin¢ln (cos(qﬁ) + s+ \/1 + 2scos ¢ + 82) + cos a\/l +2scosp+ s2. (2.21)

We define s¢i¢ as the value of the slope in (—00, Smax) Where F'(s) equals its limit as s — oo:
i.€., F(seit) = cosa, or arg(d + sqit€1) = —2a (see Figure 2). This value is given by

Serit = — sin(2a — ¢)/ sin(2a). (2.22)

We will show that the long-time behavior of the discrete model of (2.10) is related to whether
Smax and S¢¢ are positive or negative. We distinguish three cases as follows, indicating the
corresponding relations between a and ¢, for each:

Case 1: Serit < Smax < 0 0< o<
Case 2 : Serit < 0 < Smax a< ¢ <22 (2.23)
Case 3: 0 < Serit < Smax < o<

Note that in Case 1, we have F'(0) < 0 (see Fig. 2), so the trivial equilibrium solution
w = 0 is ill-posed to one-dimensional perturbations. More generally, we claim that any
possible smooth solution must be ill-posed in Case 1. To see this, observe that the boundary
conditions (2.13) force solutions to maintain zero average slope, [ w, dz = 0. Hence in Case 1,
every non-trivial continuous w(z) will be ill-posed in some subset of 0 < z < 1, where its
slope is positive. This argument for the one-dimensional problem (2.10) independently re-
derives and generalizes the earlier linear stability result (2.9). In contrast, for Cases 2 and 3
the trivial solution of (2.10) is well-posed. Moreover, for initial data with max(w;) < Smax,
(2.10) is strictly forward parabolic. Consequently (i) a maximum principle for w, can be
established, (ii) the L, norm of w, evolves according to

d 1 1
a/ w? dr = —/ D(wy)w?, dz <0, for w; < Smax, (2.24)
0 0



and (iii) this class of solutions converge to w = 0 as t — oo. While Case 1 can be distinguished
from Cases 2 and 3 by the respective ill- or well-posedness of w = 0, we will show that Cases
2 and 3 differ in whether or not w = 0 is the unique equilibrium solution of the discretized
version of (2.10).

2.8 The semi-discrete one-dimensional problem

As discussed in the introduction, we consider a continuous-time/discrete-space, approxima-
tion to (2.10, 2.13). Specifically, given a positive integer N > 2, let Az = 1/N be the
uniform spacing of grid points in a finite-difference discrete solution w,,(t) ~ w(nAz,t), for
n=20,1,2,..., N. The discrete solution evolves according to the coupled system of (N — 1)
nonlinear ordinary differential equations forn =1,2,..N — 1,

dw,, 1 Wyt — Wy Wy, — W1
_ ) _n me 2.2
dt Az {F ( Az ) F ( Az )} ’ (2.25)

where the boundary conditions (2.13) become

Wy = 0, WN = 0. (226)

For N = 2, (2.25,2.26) reduces to a single first order equation for wy; similarly for N = 3,
the general model reduces to an autonomous phase plane system for w; and ws. Recently
and independently, work on these low-dimensional models was done in [35] for the study of
clustering instabilities in granular gases. Our analysis of the solutions of (2.25, 2.26) applies
for all N > 2, but our focus will be the consideration of large values of N and the continuum
limit, N — oo.

For brevity, we will write the arguments of F(-) in (2.25) as

! — Wn+1 — Wy

Wnt1/2 Az (2.27)

This is a second-order-accurate centered finite-difference approximation of the spatial deriva-
tive, i.e. wy, g /o(t) = w,((n+3) Az, t)+O0(Az?). This discrete system has a Liapunov function
analogous to (2.19),

N-1
L(wn) = Y V(wp)) Az, (2.28)

n=0
Using summation by parts, it can be shown similarly that the discrete Liapunov function is

monotone decreasing,

10



d (& P dw,, dw,,
dt (Z V(w%+1/2) Ax> = lF(w;zH/Q) (# T d )] (2.29)

Formally, the discrete model (2.25) converges to the PDE (2.10) as Az — 0 up to O(Az?)
errors. Retaining terms through order O(Ax*), we derive the effective PDE for (2.25),

ot o

= e r + G (v [Fwa] ) roaa. 2a0)

Linearizing this equation about w = 0, we obtain

Ow O*w  Ax? 0w A

5 = D(0) (8352 + 19 8:54) + O(Az*). (2.31)
For D(0) < 0, equation (2.31) contains a destabilizing second-order term and a regularizing
fourth-order term. This balance of terms occurs in many models of physical systems, includ-
ing the Cahn-Hilliard equation for binary mixtures [7,29] and the Kuramoto-Sivashinsky
equation [15] from combustion theory, image processing models [20,8,2], biological systems
[23,21], and spatially discrete mechanical systems [28,26]. Solutions of these equations exhibit
regions where the solution is smooth, which are separated by thin layers with large gradi-
ents; for large times these layers eventually merge together [29,30]. We observe analogous
coarsening behavior in solutions of (2.25).

For D(0) > 0 the fourth order linearized modified PDE (2.31) is high-frequency unstable.
However, as noted in the introduction, the discrete finite difference model (2.25) eliminates
the dynamics of all length scales smaller than the fundamental grid-spacing. Consequently
the spatially discrete system (2.25) is not subject to such unbounded growth rates at high
frequencies.

Since F'(s) is bounded, solutions of (2.25) exist for all time and grow at most linearly in
time. We show that, in fact, independent of Az = 1/N, the solution is bounded for all time
in the max norm: i.e. there exists a C' such that

max lwa(t)] < C.

In view of the boundary condition (2.26), boundedness of w, () is an immediate consequence
of the following proposition.

Proposition 2 If w(?) is a solution of (2.25) and if Sy = min, wy, ., 5(0), then for alln and
allt>0

w;L—f—l/Q(t) > min(scrita SO) (232)

11



Note that if w(z,t) were a twice differentiable solution of (2.10), then w would satisfy the
stronger estimate wy(z,t) > min(Spayx, So) Where Sy = inf, w,(z,0). Indeed, since F(s) is
monotone increasing on (—o00, Syax), the maximum principle gives this estimate. However,
because of the discretization, solutions of (2.25) do not satisfy this stronger estimate. Nev-
ertheless, the derivation of (2.32) is modeled on the proof of the maximum principle.

Proof: For brevity let s, denote the RHS of (2.32). Obviously, (2.32) is initially satisfied at
time ¢ = 0. Suppose that for all grid points and for all ¢t < ¢, we have w'(t) > s,, and suppose
that for some grid point n, we have w;,,,,(t.) = s.. Then, taking differences of (2.25), we
calculate that at this point and t = t,,

dw, 1/ 1
it N (F(Whia2) = 2F(s.) + F(w),_yp0)) -

We claim that
F(s.) < F(w),s) (2.3

and similarly for F'(w;,_, ), from which it follows that at ¢ = ¢,

dw!
27:1/2 > 0. (2.34)

t=tx

To prove the claim, observe that s, < w;+3/2. If w;+3/2 < Serit, then (2.33) follows from
the fact that F(s) is monotone on an interval containing (—oo, s¢it). On the other hand, if
Serit < w;z—|—3/2: then

F(s.) < F(serit) < Fwya70), (2.35)

the latter inequality in (2.35) being apparent from Figure 2.

!

By itself, condition (2.34) is not sufficient to exclude the possibility that wj, ,(t) < s, for
some ¢ > t,. However, as in the proof of the maximum principle [18], we may derive (2.32)
from the above argument by taking the limit of slightly modified functions for which (2.34)
becomes a strict inequality. m

3 The discrete steady-state solutions

The trivial solution, w, = 0, is an equilibrium of (2.25). In this section we determine the
nontrivial equilibrium solutions of (2.25). We show that the number of solutions depends on
¢, corresponding to the three cases identified in (2.23).

12



3.1 Equilibrium solutions of the discrete model

If an (N + 1)-component vector {w,} is an equilibrium solution of (2.25, 2.26) then there is
a constant I such that the slopes (2.27) all satisfy

F(w;l+1/2):F’ 7'L:0,1,...,N—1. (3.1)

From the boundary conditions (2.26), the N values of the discrete slope, {w;,,,/,}, are also
subject to the global constraint

N-1

> w;+1/2 =0. (3:2)

n=0

This condition is the discrete analogue of [ w, dx = 0, the consequence of the homogeneous
Dirichlet boundary conditions (2.13). Thus, we have identified equilibrium solutions {w,} of
(2.25, 2.26) with solutions ({wy, 1,5}, F) of (3.1, 3.2).

Considering (3.1) alone, we note that nontrivial solutions are possible only when F'(s) = F
has multiple solutions. If cosaw < F' < 1, there are two values of the slope s, call them s
and sq, such that F(s) = F,

F(s1) = F(sg) = F. (3.3)

From the properties of F(s) given by (2.14) it is clear that s; and sy must bracket Smax-
When F = 1 both roots are close t0 smax; as F decreases the roots separate continuously.
As F — cos a, one solution of (3.3) becomes large, s; — oo, while the other one approaches
the limit sy — s¢y. Using (2.14) we can eliminate F in (3.3) to express s; in terms of sy,

sin(2a—2¢) Siie §
in rit 92
s1= H(sy) = S " (3.4)
Scrit — 52

This formula shows that, as F varies, (s, so) traces out a portion of a hyperbola, as shown
in Figure 4. This hyperbola is necessarily invariant under the interchange of s; and so. Its
horizontal and vertical asymptotes are s; 2 — Scrit- Changing the values of o and ¢ affects the
position of this hyperbola in the plane and changes the number of solutions of the discrete
problem (3.1, 3.2).

To complete the description of the nontrivial equilibrium solutions, we now examine the
constraint (3.2). To enumerate the equilibrium solutions, we define K as the number of grid
positions where the slope wy, PREEE the remaining N — K positions will have slope s,.
Consequently (3.2) reduces to

Ksi+ (N — K)sy = 0. (3.5)
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S1

Fig. 4. The construction for the weak (sY,s¥) and strong (s°,s5) solutions in Case 2, given by
g + +

the intersection points of the hyperbola (3.4) and the line (3.5).

Ky

B=2a—~

Case 2

N =10 Case 1’

0 /2 0 N/2 N
o K

Fig. 5. (left) The upper bound for Case 2/, ¢ < («, N, 1), for N = 10, 20,40, - - - , and the continuum
limit, 8 — 2a as N — oo, and (right) S(a, N, K) for K in 1 < K < N with fixed N.

Graphically, finding the intersection points of the hyperbola (3.4) and the line (3.5) in the
(s1, $2) plane yields all of the nontrivial equilibrium solutions at given («, ¢), see Figure 4.
Eliminating s; from (3.4, 3.5) yields a quadratic equation for sy. This equation has two real
solutions if the resulting discriminant is positive,

(N — 2K)?sin®(2a — ¢) + 4K (N — K) sin(2a) sin(2cc — 2¢) > 0. (3.6)

The case of equality in (3.6) corresponds to the case when the line (3.5) is tangent to the
hyperbola (3.4) and defines an upper bound for ¢ in Case 2. We write this bound as the
function 3, ¢ = f(a, N, K), in terms of a, N, K with a < < 2« (see Figure 5).

Using f(a, N, K), we can define three cases for the equilibrium solutions of the discrete
problem (2.25) that correspond to the cases given by (2.23). In the limit that N — oo, for
any fixed K, we find that the upper bound for Case 2 is ¢ = § — 2a, corresponding to
(2.23) (see Figure 5). For finite IV, the condition ¢ = f(a, N, K) defines the degenerate case
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Case 3/

Fig. 6. The bifurcation diagram for the weak, strong, and trivial equilibrium solutions.

where the quadratic for s, has a double root. For every ¢ < 3 there are two distinct real
roots for s9, which we will call the strong and weak solutions (denoted by superscripts S and
W), s5 < sy, see Figure 6. For the range 0 < ¢ < « corresponding to Case 1, (see (2.23)), s5
and sy’ have opposite signs, see Figure 6. At ¢ = «, the weak solution becomes degenerate,
sy’ = 0, and it intersects the branch of trivial solutions, w = 0. As we will describe later,
this intersection point is a transverse bifurcation that is connected with a change in stability
of these solution branches. For the range, a < ¢ < (3, corresponding to Case 2 (as N — co)
both strong and weak solutions yield negative slopes for s,. Finally, for the range ¢ > S,

corresponding to Case 3 (as N — o0), there is only the trivial solution w = 0.

We summarize these results on the classification of nontrivial equilibrium solutions in terms
of sy as:
For any N > 2 and for each K with 1 < K < N:

Case 1':  Two solutions, s5 < 0 < sy’ 0<¢<a
Case 2':  Two solutions, s§ < 55 <0 a< ¢ < fB(a,N,K) (3.7)
Case 3':  No nontrivial solutions Bla,N,K) < ¢ <.

Case 1’ is the same as Case 1 of (2.23); Cases 2’ and 3’ approach Cases 2 and 3 of (2.23)

as N — oo, for which f§ — 2«a. The corresponding s; values are given by (3.5), s; =
—(N — K)sy/K. For given values of N and K, there are (%) distinct equilibrium solutions
{wy} resulting from different spatial arrangements of the two slopes. Clearly s; and s, must
have opposite signs, and if K < N then [s1| > |sq|, for example see Figure 7. These solutions
with K < N can be described as having jump discontinuities at the grid points with the
larger slope s, with the magnitude of the jump being s;Axz = s;/N; the remainder of the
solution is piecewise linear with slope s;. We will refer to s; as the “jump” or “shock” slope,

and to sy as the “background” or “mean-field” slope, respectively.

At this point we note that the above description actually provides a redundant enumeration
of the set of equilibrium solutions. This is due to double counting of the solutions caused by
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Fig. 7. Two equilibria for Case 1’ with o = 7/8, ¢ = @/2 and N = 100; (a) a strong shock solution
with K = 2 jumps, and (b) a much smaller-amplitude weak shock solution for K = 1.

the symmetry under the interchange,
§1 &> S9 and K+ N-K, (3.8)

i.e. if {s1, s9, K, N —k} describes a solution of (3.3) and (3.5), then so does {sy,s1, N—K, K}.
To eliminate this redundancy, let us define the two slopes in a nontrivial equilibrium solution
with one slope, s, that is greater than sy,., Sy > Smax, and the other less than sp.y,
§_ < Spax- For enumeration of the solutions, we can associate s, with s; and henceforth
define K as the number of grid cells with slope s,

Ks, +(N—-K)s_=0 (3.9)

This description of the two equilibrium slopes will be of particular importance for the later
analysis of the stability and dynamics of solutions of (2.25). This is because s; > Smax
corresponds to the ill-posed regime for the PDE (2.17) with D(s) < 0, while s_ < Spax
corresponds to well-posed behavior with D(s) > 0. Except in the special case of the Case
1" weak solution, the descriptions of solutions based on the ill-posed and well-posed slopes,
(s+,s-), are equivalent to the descriptions in terms of the jump and background slopes,

(s1,82).

We now derive asymptotic estimates for the two families of weak and strong solutions with
a single jump, K = 1, in the limit of large N. In this limit, s, tends to infinity, and from
Figure 2 we see that s_ tends to s.i; more precisely, by condition (3.5) we obtain

§° = Seis +O(NT') <0, (3.10)
85 =—(N — 1)8ais + O(1) > 0.

We will call these solutions with slopes (s°, Si) strong shocks. They correspond to the lower

branch of solutions shown in the bifurcation diagram Figure 6, where we note that ¢ = 0
yields sy = —1, i.e. the endpoint of that branch of the bifurcation diagram.

For K =1 as N — oo, the other solution is given by
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sW=—s50/(N—1)+O(N7?), (3.11)
sV = so+O(NTY),

where s is the nonzero slope such that F'(so) = F(0), specifically,
so = —sin(2a — 2¢)/sin(2a — ¢). (3.12)

We will call these solutions weak shocks. As N — oo, these {w,} solutions are small in
amplitude, they scale as O(N ') — 0 everywhere, with the size of the jump being s\ Az ~
so/N (see Figure 7). The weak shocks correspond to the upper branch of solutions in Figure 6.
At ¢ = a, s = 0, and as noted earlier, the weak shock solution coincides with the trivial
solution w,, = 0.

Note that similar results for multiple-jump weak and strong shock solutions can be derived
for any fixed K = 1,2,3,... in the limit that N — oco. Then, given the values of the two
equilibrium slopes, s, and s_, and their spatial distribution, say the values ny, with & =
1,2, ..., K, of the grid points where the slopes s; = w;LkJrl/2 occur, then the solution {w,}
can be reconstructed explicitly from

Wy =D Wiy A, n=0,1,2, ..., N. (3.13)
7=0

3.2 Comparison of discrete equilibria with generalized solutions of the PDE (2.10)

As described above, the equilibrium solutions of the discrete problem (2.25) are piecewise
linear functions with K finite jumps. For the case of K = 1 jump, applying the bound-
ary conditions (2.26) and summing the difference quotient wp1/2, (2.27), over n yields the
equilibrium solution

Wy = S_ [nAx —H(n—[n. + %])] ; (3.14)

where Az = 1/N, H(:) is the Heaviside function, and n, is the value of n for which wy, ,, ,» =
s4+. For N — oo, this solution is the discrete analogue of a weak solution of the PDE (2.10).

Formally, an equilibrium solution of (2.10) has 9,F (w,) = 0, or equivalently F(w,) = F.
If F = cosca then there is a family of piecewise linear weak equilibrium solutions with a
single finite-jump discontinuity. The mean-field equilibrium slope is the finite solution of
F(wg) = cosa, that is w; = Squig, (2.22). Consequently we can write the equation for an
equilibrium solution with a single discontinuity as w, = Seit[l — 0(z — x4)], where 0 is the
Dirac delta function and 0 < z, < 1 is the shock position. Integrating this and applying
(2.13) yields the steady-state solution

w(x) = Serit|r — H(z — x,)]. (3.15)
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This one-parameter family of solutions, parametrized by the shock position in the domain
0 < z, < 1, is the continuum limit of (3.14), since as N — 00, s, — 00 and s_ — Seris-

However, (among many other solutions) piecewise linear weak equilibrium solutions can be
constructed with any countable number of positive jump discontinuities. We are content to
mention in passing the formal similarity between solutions of the discrete system and gener-
alized solutions of the ill-posed PDE (2.10). More definitive statements about the solutions
of the PDE require careful analysis [14,20]. In the following sections, we study in detail the
stability, local instabilities and global dynamics of the discretized model (2.25).

4 Stability of the equilibria

The following result on the stability and long time evolution of solutions of (2.25) for the
cases defined in (3.7) will be proved in this section.

Proposition 3 On the stability of equilibrium solutions of (2.25):

Case 1' Only strong shock solutions of (2.25) with a single jump discontinuity are stable.

Case 2' Strong shock solutions with a single discontinuity and the trivial zero solution are
the only stable equilibria.

Case 3' The zero solution is stable and in fact globally attracting.

In Cases 1" and 2' for almost every initial condition (i.e., not on the stable manifolds of the
unstable equilibria), every solution approaches a stable equilibrium as t — oc.

4.1 The Liapunov function: a necessary condition for stability

We now make use of the Liapunov function (2.28)

N-1

L(w)= ) V(w:z+1/2) Az,

n=0

to establish some fundamental stability results for the discrete system (2.25). Recall from
(2.29) that £ is monotone decreasing as w evolves. Indeed, £ defines (2.25) as a gradient
system in the form

dw, 1 0L

In particular, w is an equilibrium solution of (2.25) if and only if it is a critical point of L.
L is bounded from below and tends to infinity as |w| — oo. Therefore £ must always have
at least one local minimum corresponding to a linearly stable solution.
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In Case 3', w = 0 is the only critical point of £; thus from the properties of £, w = 0 must be
a minimum of £. Therefore, in Case 3', the trivial solution is stable and globally attracting.

Turning to Cases 1’ and 2', the following result eliminates most candidates in the search for
stable equilibria.

Proposition 4 If w® € R¥*! is an equilibrium solution of (2.25) derived from (5.8, 3.5)
with K > 2, then w° is not a local minimum of L.

Proof: Consider an equilibrium solution w® with s,,s_ given by (3.4,3.5) for a given K > 2.
To demonstrate that such a solution is not stabl, we show that £ is not a minimum at w®
by differentiating along an appropriate curve of vectors in R¥*, {w(q)}, through w® We
construct this one-parameter family of near-equilibrium states by perturbing two of the K
values where the slope is wy, |, » = s; (at points n = n; and n = ny) then the finite difference
quotients wy,;/5(q) satisfy

( sy +4q if n=nq,
Wnt1/2(@) = s b= (4.2)
Sy if n=nyfork=3,4,..K
[ s- otherwise,

where we note that for ¢ = 0, we recover the equilibrium, w(0) = w°, while the constraint
(3.2) is satisfied for all g. Then the Liapunov function is

L(@) = V(s +0) 4 V(s —0) + (K =2)V(s) + (N = KWV ()] (43)

At ¢ = 0 the first derivative of £L(w(q)) vanishes, and the second derivative satisfies

d*L 2, 2
_— = — ‘/ = —FI
dq2 =0 N (S+) N (8-1-) < Oa

where the final inequality follows from s; > Syax. Consequently we conclude that (4.2) with
g = 0 is not a local minimum of £ and hence w°® with K > 2 is an unstable equilibrium. m

4.2 Linear stability analysis

Having used the Liapunov function to establish the instability of all equilibria with more
than one jump, we turn to linear stability to analyze the trivial solution and single jump
(K = 1) equilibria.
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First, at the trivial solution w, = 0, the linearization of (2.25) is

dw Wpt1 — 2Wp + Wp_1
— =Lw = F'(0)—= " 4.4
M L= (o) e 2 (4.4)
where L = N2F'(0)T is the (N — 1) x (N — 1) symmetric tridiagonal matrix with
-2 1
1-2 1
1 -2 1
T = (4.5)
1 -2 1
1 -2

The matrix T is the standard finite difference centered second derivative operator with ho-
mogeneous Dirichlet boundary conditions [16]. Since T is negative definite, with eigenvalues
oj = —4sin®*(3mj/N) for j = 1,2,..N — 1, the trivial solution of (2.25) is stable if F'(0) > 0
— in Cases 2’ and 3’ — and is unstable if F'(0) < 0 — in Case 1".

To complete the stability analysis, we examine the linearization of (2.25) at single jump
(K = 1) weak and strong shock equilibria for Cases 1’, 2'. We will summarize the results
below in Proposition 6. Note that from Proposition 4, we can already eliminate the possibility
that the single-jump weak shock solution (sY,sY), is a stable equilibrium in Case 1’, since
from (3.8) it maps onto a solution with s, > sma with K = N — 1 > 2, however we will

mention it in the discussion for completeness.

The linearization of (2.25) may be analyzed in terms of matrices containing two blocks
similar-in-form to (4.5). To facilitate the calculation, we introduce the notation Tg{@l for the
matrix (4.5); the subscript of course specifies the dimension, and the superscripts refer to the
Dirichlet boundary conditions at both end points of the interval. Extending this notation,
we shall write T]g[") for the analogous M-dimensional operator with Dirichlet boundary
conditions at the left endpoint and Neumann boundary conditions at the right endpoint:

i.e., the M x M matrix with rows as in (4.5) except with the last row replaced by
© ... 0 1 —1). (4.6)

Similarly, T%? is obtained by modifying the first row of T, and T{™ by modifying both

the first and last rows.

For an equilibrium with one jump located at grid point n; = I, that is w’I+1/2 = s, the
linearization of (2.25) may be viewed as a perturbation of a block diagonal matrix,

Ty = diag(ng"), TS\T;@I—J- (4.7)
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Specifically, the linearization is given by the symmetric tridiagonal operator

L(e) = N*F'(s_)(T, — €P), (4.8)
where
_ _F'(3+)
€= Fi(s.)’ (4.9)

and the perturbation P is given by
P = diag(OI_l, A, ON_[_Q), (410)
with 0,7 denoting the M x M zero matrix and A the 2 X 2 matrix
A= . (4.11)
1 -1

Note that P has three blocks, the 2 x 2 middle block overlapping the corners of the two
blocks in (4.7). Here we have assumed that 2 < I < N — 3; the cases with a jump adjacent
to either endpoint, which are simpler, are left for the reader.

Proposition 5 T — €P is negative definite if —oo < € < (N — 1)7! and has one positive
eigenvalue if € > (N — 1)1,

Proof: We shall show that
det[—(To — eP)]=1— (N — 1)e.

As shown by Givens (see [16]), the determinant dy_; of an (N — 1) x (N — 1) symmetric,
tridiagonal matrix with entries M = {m;;} is generated recursively by d; = mj;d;_1 —
(mj_1,;)?d;j_s for j = 2,3,..., N — 1 with dy = 1 and d; = my;. In applying this algorithm to
M=—-(Ty—¢€P),forj=2,...,I—1andfor j=I+2,...,N —1 the recursion relation is

dj == defl - djfg,
while for the two values of j between these two ranges

di=1-€d;y—dry and  dr = (1—¢€)d; —€dp ;.

In the first range of j, from the recursion relation, we obtain d; = 1+ j > 0 for j =
2,3,---,1 — 1. In the second range of j, after applying the special cases for j = I and
j = I+ 1 given above, we find d; =1 —¢j for j = I,--- ,N — 1. Thus, the determinant is
given by dy_1 =1 — (N — 1)¢, as claimed.

Further, from Givens’ theorem [16], the number of positive eigenvalues of Ty — €P is given
by the number of sign changes in the sequence {d;}. Note that Ty is negative definite, hence
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for ¢ = 0 there are no positive eigenvalues. Since {d;} for j > I is monotone decreasing,
only a single sign change can occur, if dy_; < 0. Since dy_1(€) = 0 has a simple zero for
€ =1/(N — 1), the matrix Ty — €P has a single positive eigenvalue for e > 1/(N —1). m

Proposition 6 The linear stability of the single jump (K = 1) equilibria breaks down into
cases as given by (3.7):

Case 1' : The strong shock solution is stable, while the weak shock is highly unstable with
N — 1 positive eigenvalues.

Case 2' : The strong shock is stable, while the weak shock solution is unstable with one
positive eigenvalue.

Proof: We begin with the strong shock, (s%,s%). It can be shown that 3 < smay for

0 < ¢ < B(a, N, 1) and for any N. Therefore the factor F'(s_) in (4.8) is always positive for

strong shocks. To estimate € = €} in (4.9), we use the asymptotic form (3.10) for (s°,s%) in

the formula (2.18) for D(s) = F'(s) :

g (]_ + 28C1‘it COs QS + S(erit)3/2

6 — 6 ~
1 2
NQ(SmaX - Scrit)scrit

=O0(N7?)>0. (4.12)

Consequently since ¢ = O(N72) < (N —1)7' as N — oo, by Proposition 5, all of the
eigenvalues of L(e) are negative and the strong shock is stable for Cases 1’ and 2'.

In contrast, for the weak shock (s%, s¥), in the limit N — co, we find from (2.18) and (3.11)
that

A% S0 — Smax
€E=¢€ ~ =0(1) > 0. (4.13)
' Smax(l + 2Scri‘c Cos ¢ + Sgrit)3/2

Therefore, for the weak shock, e = O(1) > (N—1)"! as N — oo, and Ty —¢P is not negative
definite but has one positive eigenvalue for both Cases 1’ and 2'. For Case 2/, sW < Smax, S0
F'(sY) is positive and the weak shock is unstable with one positive eigenvalues. For Case 1/,
sW > Sspax, S0 the multiplicative factor F’(s") is negative and the N — 1 negative eigenvalues
of Ty — €P become N — 1 unstable positive eigenvalues for L(e) for the weak shock. m

As was shown above in Proposition 6, for Case 1', since it is stable, the strong shock must
correspond to a minimum of the Liapunov function £. From (2.28), this value of £ is inde-
pendent of the position of the jump within the domain. Therefore all N of the single-jump
strong shock solutions are stable. The same argument can be applied for the strong shock in
Case 2'. These results are independent of the linearized analysis done in this section. Linear
stability analysis shows that the position of the shock and the influence of the boundary con-
ditions do weakly effect the values of the eigenvalues, but they do not change the stability
of the solutions.
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Fig. 8. Convergence of different numerical methods for an initial value problem in Case 1’ for system
(2.25).

5 Representative dynamic simulations

In this section we present the results of a representative set of numerical simulations of the
dynamics of system (2.25). These simulations illustrate some of the differences in behavior
in the three cases in Proposition 3. The simulations also guide the analysis of the nonlinear

dynamics in the following sections.

We begin with a brief discussion of the numerical methods used for the simulations. As was
discussed above, while the continuum PDE (2.10) is ill-posed, for any finite N the discrete sys-
tem (2.25) is well posed, with global solutions. Subject to typical analytic constraints [16,17],
(2.25) can be solved numerically using any appropriate method for integrating systems of
coupled ODEs. Figure 8 shows the results of a convergence study as the discrete time-step
approaches zero, At — 0, for a typical initial value problem. We tested several standard ex-
plicit and implicit schemes. For sufficiently small At all of the methods showed convergence
with the expected order of accuracy (see Figure 8). The implicit midpoint method, written

in general form as

m+1l _ ,.m
% =F, (%(wrm—l + wm)) ’ (5'1)

where w" &~ w,(t™) and t™ = mAt, had the smallest error coefficient and was used for all
of the following numerical simulations.

In Figure 9 we consider the evolution of the solution for an initial value problem in Case 1/,
with o = 7/8, ¢ = «/2, and w,(0) = sin(7n/N) for n = 0,1,2,--- , N with N = 100.
As described above, in Case 1’, the stable steady state is piecewise linear with a single
jump. The intermediate dynamics leading up to this state are rather complicated. Figure 9a
shows the initial unstable behavior; the solution rapidly develops a large number of jump
discontinuities, forming what is sometimes called a “staircase pattern.” This stage of the
evolution can be compared to spinodal decomposition of binary mixtures [7], where large
numbers of phase interfaces develop from an unstable initial state. Figure 9b-d shows the
generic mode of evolution for longer times; the sizes of the jump discontinuities evolve on

23



0.8

0 0.5

—

0.8

0.4

0 0.5 1 0 0.5 1
(C) on (d) T,
Fig. 9. Evolution for a Case 1’ initial value problem; (a) short time evolution up to time ¢, cap-

tures the unstable phase, where smooth initial data forms lots of discontinuities, (b—d) coarsening
behavior at times t3, t. leading to the final steady-state with a single shock, see tg4.

slower time scales. This regime will be described as coarsening dynamics, where most of the
phase interfaces collapse leaving larger intervals where the mean field holds.

Due to the global constraint (3.2), while some of the jumps grow, others must decay. This
behavior is illustrated in a different form in Figure 10b, where the values for all of the
slopes, wy, 1 5(t), n = 0...N — 1 are plotted as functions of time. From this figure we note
that at any time ¢ > 0.1 there are a small number of points with large positive slopes
(jumps with s, > spax), while most of the grid points have a small negative slope (the
mean field with s_ < $yax). From Figure 10a we observe that the dynamics for (2.25) has a
monotone decreasing Liapunov function (2.28) that experiences a sequence of rapid declines
coinciding with the collapse of each successive jump. Ultimately, the single-jump, stable,
strong shock is approached for t4 < t — oo (see Figure 9d). Incidentally, the location of the
final jump depends very sensitively on the initial data and on the simulation parameters.
In a series of numerical experiments like that of Figure 9, but with perturbed initial data
wy(0) = (14€) sin(rn/N) with e = O(107'?), we found that even such tiny perturbations lead
to discontinuous changes in the position of the steady-state jump. This extreme sensitivity
is a clear reflection of the ill-posed nature of the underlying problem.

For contrast with Figure 9, we present the evolution of the problem in Case 3', with ¢ = 2.1,
starting from the same initial conditions, see Figure 11. Figure 11a shows that for long times,
the solution converges to the stable trivial solution, w = 0. However, since the initial data is
partially ill-posed, with the slopes of the initial condition satisfying wy, , , /2 > Smax for some
range in x, a staircase pattern composed of finite jumps with large slopes develops for ¢ ~
0.1. For comparison with Figure 10b, Figure 11b shows the more complicated intermediate
dynamics for the large slopes in Case 3', before they all decay to zero.
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Fig. 10. (a) The evolution of (a) the Liapunov function, and (b) the values of the local slopes w;, /2

forn =0,1,2,...N — 1 plotted as a function of time for the Case 1’ problem in Fig 9.
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Fig. 11. Evolution for the initial value problem in Case 3'; (a) wy profiles and (b) slopes w;, /2 88
a function of time.

As described in Proposition 3, for Case 2' both the trivial solution w = 0 and the K = 1
strong shock solutions are stable. One way to illustrate this bi-stability is to plot the Liapunov
function L for the one-parameter family of piecewise linear functions with K = 1 (see Fig. 12),

s
w;“H/Q =s,, w;+1/2 = —ﬁ for n # ny. (5.2)

Then, as a function of the slope s at the jump, the Liapunov function (2.28) takes the form

L(s,) = % Vis)+ -1y (-] (5.3)
This is a double well potential with minima corresponding to the trivial state w = 0 and the
strong shock solution (see Fig. 12a). The weak shock is an unstable equilibrium corresponding
to a maximum of £ and separates the basins of attraction of the two stable states (see
Fig. 12b). While this description is quite suggestive, it is also somewhat misleading for the
dynamic evolution. This is because solutions of (2.25) starting from initial data given by
(5.2) do not remain within the family (5.2) with s; = s, (¢). Nevertheless, this discussion
serves to point out the significance of the unstable weak shock as a boundary for the basins
of attraction of the trivial and strong shock solutions. The existence of bi-stability in Case 2’
in a model of clustering of granular gases [35] of the same form as (2.25) with N = 3 was
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Fig. 13. The basin of attraction for the uniform state w = 0 for @ < ¢1 < o < ¢p3 < --- < f(a, N, 1)
in Case 2’ given in terms of the two-parameter family of initial conditions (5.4).

studied in connection with hysteretic effects.

Next, we illustrate the dependence on the initial conditions of the large-time limit of the
solution in Case 2'. Consider the discrete problem (2.25) with N = 100 and a two-parameter
family of small-amplitude initial data (e;, €5 small),

w(z,0) = € sin(mx) + € sin(27z). (5.4)

In Case 2/, the basin of attraction of the trivial solution depends on the value of ¢, with
a < ¢ < f(a,N,1). We plot the boundary of the basin of attraction of the trivial solution
w = 0 for various values of ¢ in this range, see Figure 13. All initial conditions within the
basin converge to w = 0, large-amplitude solutions outside the boundary converge to the
stable strong shock solution. In the limit ¢ — «, the basin shrinks to the origin, as in Case
1, where w = 0 is unstable and the shear band is the global attractor. In the limit ¢ — (3,
the basin of attraction for the strong shock solution shrinks to a point, where there is a
saddle-node bifurcation and the weak and strong shocks coalesce (see Fig. 6). The trivial
solution w = 0 then remains as the unique (global) attractor.
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set of simulations with a range of values for N = 100..25600.

6 Scaling laws and considerations of the continuum limit

In this section we study in detail the coarsening dynamics of solutions of (2.25) in Case 1’
with initial conditions

w(z,0) = w(r) = Asin(rz), (6.1)

with
0 < |A] € Amax,

where Apax = |Smax|/7. For this range of A, the condition
O, w(T) > Smax, (6.2)

is satisfied everywhere and coarsening dynamics is observed throughout the entire interval,
0 < x < 1. Recall from Section 2.2 that in Case 1, the trivial solution w = 0 is linearly
ill-posed and small-amplitude initial data satisfying (6.2) will be unstable everywhere in
0 < z < 1. Grid-scale instabilities develop everywhere and evolve to a staircase profile (see
Fig. 9ab) followed by coarsening dynamics, during which the jumps vanish one-by-one until
just one remains. It is easier to analyze the dynamics for small initial data than the simulation
shown in Fig. 9, where A = 1. We will consider initial value problems with small initial data
for Case 1’ of (2.25) to avoid complications that may be introduced by bi-stability in Case 2’
and non-uniform spatial instabilities for large amplitude data. While we show results for the
specific example with initial data with A = 107 in Case 1’ with @ = 7/8 and ¢ = /16,
and Spax & —0.855, for simulations with N = 2™ x 100 for m = 0,1, 2,...,8 grid points,
simulations with other data strongly suggest that the features of the ensuing evolution are
universal, for sufficiently large N, for all initial data satisfying (6.2).

In section 3, we defined equilibrium jumps as grid points where the discrete slope was larger
than smax, w44 /2 > Smax. Here, we apply the same criterion for counting the number of
jumps, K(t), in an evolving solution {w,(¢)}. The remaining N — K grid points, where
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Wy 4172 < Smax, are called the background. Examination of the simulations shows that, for
large times, K (t), the number of finite jumps at time ¢, satisfies the scaling law

K(t) ~C (%)_1/3, (6.3)

for some constant C. A remarkable collapse (even for short times) of the data from simula-
tions with different values of N occurs if we re-express (6.3) as a scaling law for K/N, the
density of jumps in the interval,

~1/3

~ C(N?) (6.4)

K(1)
N
This scaling behavior is exhibited in Figure 14a, which contains data from simulations with
N =2™ x 100 for m =0, 1,2, ...,8 grid points.

A direct consequence of (6.4) is a scaling law for the average slope for a jump at time ¢.
To see this consequence, we note that the global constraint on the slopes (3.2) holds for all
times. Let s1® and s™® be the averages at time ¢ of the jump (s > Spax) and background
(s < Smax) slopes respectively. Then in terms of these averages, (3.2) yields a generalization

of (3.9) valid for all times,
Ks% + (N — K)s®8 = 0. (6.5)

respectively. For long times, s*® & s.i and K decreases, leading to K < N, so (6.5) reduces
to

av, N Seri
T8~ — ¢ Serit ™ —#(N%)l/s- (6.6)

Figure 18b shows that for large times, the average slope at a jump does follow this scaling
behavior.

A useful heuristic picture of the solution may be extracted from formula (6.3), considered
at a fixed time ¢, as N — oo. In the coarsening dynamics regime, the solution {w,(to)} is
approximately piecewise linear in n, with intervals of width O(K~") = O((ty/N)'/3) where
the slope is close to s alternating with single grid-cells with large negative slopes of order
O((N?ty)?/?). As suggested by Figure 9a, wherever staircase pattern forms, it evolves so that
{wn(to)} continues to follow the initial data w(x) in some approximate or locally-averaged
sense. Based on this observation we introduce two norms to investigate how the solution
evolves from the initial data.

Specifically, we consider two L? norms, for the depature of w,(t) from the initial condition
w(z), (6.1), and for the departure of the slopes w;, () from w,(z),

1/2

Ey(t,N) =) |wa(t) — w(nAz)|* Az| (6.7)

n
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1/2

Ey(t,N) = |3 w1 5(t) — wy(nAz)[* Az| (6.8)

Figure 15 shows plots of these norms for a series of simulations with resolutions N = 2™ x 100
points with mm = 0,1, 2, - - - , 8. From Figure 15a, we see that for very short times E,,(t) shows
slow exponential growth with rate A\; ~ —72F'(0). This is to be expected since (6.1) is a
multiple of the lowest order eigenvector of the linearization (4.5). However, since this problem
is ill-posed, this smooth evolution is very quickly overwhelmed by strongly unstable high
frequency modes that generate grid oscillations. These instabilities also grow exponentially,
with rates on the order of the largest eigenvalue, Ay_; = O(N?) as N — oo (see Figure 15a).
This instability can be regarded as the initial stage of phase separation — the formation of
large gradients in the solution. Due to the maximum principle, Proposition 2, these grid
oscillations cannot grow indefinitely, but saturate and lead to another stage of dynamics.

From the growth of the strong instabilities, we note that the timescale of the dynamics at
the end of the regime of linearized growth is ¢t = O(N~2). In fact, this timescale holds for
all of the longer time dynamics of the solution. Figure 15b shows that for longer times, both
norms, E,, and E, depend on the rescaled time, 7 = N?¢t. In fact, there is a remarkable
collapse of the results from all of the simulations onto limiting curves independent of /V that
hold after the instabilities have saturated. Figure 15b shows that for large 7, the norms very
closely follow the power-law scaling with exponent 1/3,

1/3

Ew(t,N)N%(NQt) . E2(t,N) ~ Cy(N2%)"2.

(6.9)

Changing the point of view, fixing ¢ and letting N — oo, from the scaling of Fy(t), we

note that the maximum slope in the solution will diverge like O(N?/3) (see also (6.6)), see

Figure 16a. Further, note that the scalings for norms (6.9) at a fixed time simplify to
E,(t,N)=O(N~Y3)  EX(t,N)=O(N*?). (6.10)

From this we observe:
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jumps in the solution.

e For any fixed positive time ¢, as N — oo, in terms of the L? norm, the solution w,(t) will
not have evolved from the initial data, since E,, = O(N~'/3) — 0.

e For any fixed positive time ¢, as N — oo, in terms of the H! norm, the solution blows up,
since E? = O(N?/3) — oo.

These two observations for the finite-time behavior of the continuum limit, N — oo, describe
a solution that evolves from the initial data only by instantaneously developing infinitesimally
small jump discontinuities. This singular behavior for the continuum limit shows that the
discreteness of model (2.25) is essential to its dynamics for any finite N.

Note that re-writing (6.9) for F,, in the form

t 1/3
Eu(t,N) ~ Cy (-) , (6.11)
N

shows that (2.25) has a very long timescale, t = O(N), associated with the coarsening
dynamics. This is the timescale that describes the very slow overall evolution of the system.
As described earlier, during coarsening, the large number of jumps initially created during
the initial phase separation regime will systematically collapse producing successive solutions
with fewer, larger-amplitude jumps. In the final section, we present some analysis of this
dynamic behavior.

7 Intermediate Dynamics: Coarsening

The dynamic simulations of the previous sections suggest that while we have thoroughly
studied the steady states and asymptotic stability, a complete understanding of the behavior
of (2.25) requires an examination of the complicated intermediate dynamics of the system
as well. For ill-posed initial data, i.e. for data with max(w;) > Smax, the formation of a large
number of jumps in the solution creates very unstable intermediate states. From Proposi-
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tion 4, we know that there are no stable states with more than K = 1 jumps. Consequently,
the dominant feature of the evolution for all finite times will be a type of coarsening dy-
namics — a process continually reducing the number of jumps in the solution until a stable
steady state is achieved. In this section we will use two approaches to examine the dynamic
behavior at a single-step transition, from K to K — 1 jumps. First, we use linear analysis
to study the unstable equilibria, then we also consider an approximate reduction of the full
system to a lower dimensional nonlinear system.

7.1 Linearization at two-jump equilibria

To assess the transient timescale for the collapse of a jump discontinuity, we estimate the
positive (unstable) eigenvalue of the linearization of (2.25) at an equilibrium with two strong
shocks. As was done in Section 4, the linearization can be analyzed as a perturbation of a
matrix with block structure, but now with three blocks. Specifically, if the jumps, separated
by L grid points, are at the grid points ny = I and ny = I + L, then

L(e) = N*F'(s_)(To — €P), (7.1)
where
Ty = diag(ngn), T(Lnn)a Tg\?i)l—L—l)a (7.2)
€ is given by (4.9), and
P = diag(07-1,A,0,2,A,On_1_1_2). (7.3)

Here A is the 2 x 2 matrix given by (4.11) In the following calculation we shall let N — oo
while keeping I/N and L/N fixed.

The matrix Ty in (7.2) is negative semidefinite with one zero eigenvalue associated with the
eigenvector

u= (0r, e, On—1-1-1)", (7.4)

where 07 denotes the I-dimensional zero vector and ey, € RE is given by e;, = (1, 1,..., 1)T.
This eigenvector spans the kernel of the second-difference operator with Neumann boundary
conditions, T{"™. To leading order in perturbation theory,

(u, Pu)

(u, u) 7

where (-, ) denotes the normalized Euclidean inner product on RV, (u,v) = ¥ u,v, Az.
It is readily computed that (u, Pu) = —2/N and that (u,u) = L/N; thus,

Amax ~ —€N2F'(s5_) (7.5)

9 NZFI S
)\max ~ GT(S_) (76)
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a jump in a K = 2 solution (solid line) compared with the linear growth rate (7.9) (dashed
line), (b) comparison of the maximum unstable eigenvalue for K-jump equilibria (dots) with the
perturbation-theory estimate given by (7.11) (dashed line).

To estimate €, we use the analogue of (3.10) for a two-jump (K = 2) strong shock equilibrium,

8% =8ais + O(N7Y) < 0, (7.7)

§5 =—(N — 2)sait/2 + O(1) > 0.

Using (4.9) and (7.7), we obtain the value of € for the two-jump strong shock solution in
terms of the previous result (4.12),

F'(s%) _
€=¢€ = _F’(sg) ~ 4} = O(N7?), (7.8)
Consequently, we obtain the estimate,
8 sin asin ¢
/\max ~ Ls2 . (79)

crit

Of course 1/Apax defines the time scale for the collapse of a two-shock meta-stable equi-
librium; in particular, since L scales like N/K, the collapse time is proportional to N as
N — oo. Figure 17a illustrates the accuracy of this linear estimate for the evolution for the
collapsing jump, starting from a small perturbation of the K = 2 strong equilibrium (7.7),
see Figure 7a. The linear growth rate (7.9) gives a very good estimate of the evolution until
the jump has almost completely collapsed, wy, ., /2 ™~ Smax-

More generally, this argument can be extended to show that if there are K jumps at points
ni,na, ... ,ng where K < N, then the perturbation-theory estimate for the largest positive

2 Note that, like €, the smallest eigenvalues of Ty are O(N~2). As a check on the accuracy of
applying perturbation theory when the perturbations are of the same order as the eigenvalues, we
showed that the second order correction to the eigenvalue is O(e N ~2), smaller than the first order
correction by a factor of N. Moreover, we determined the lowest eigenvalue of To — e¢P using Sturm
sequences (see [16]), and this yielded the same results as perturbation theory.
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eigenvalue of the linearization is

2EEN2F'(s3)
mink (nk — nk,l)

(7.10)

)\max ~

If the jumps are approximately equally spaced, then the denominator is Ly, ~ N/K. For
solutions with K jumps, €5, ~ K2€}, where €] = O(N~2), see (4.12). Consequently, our crude
estimate for the timescale for the transition from K to K — 1 jumps is

1 52 N

~ crit
Amax  2sinasin¢ K3

(7.11)

A comparison of this estimate of the maximum growth rate with the largest unstable
eigenvalue of the K-jump strong equilibria is shown in Figure 17b, which confirms that
Amax = O(K?). For K > 2, the strong shock equilibria have K — 1 closely spaced positive
eigenvalues, and a simplified single-mode linearized analysis may be insufficient to describe
the dynamic evolution of the problem for moderate to larger values of K.

We note that the results of the linearized analysis, (7.11), suggest that the scaling law for
K (t) should have the exponent one half rather than the actual value of one third, observed
from the simulations in Section 6. The failure of this linear estimate indicates that the
dynamic solution w,(t) does not come arbitrarily close to the unstable K-jump equilibria
during the coarsening process. In consequence, the rate of collapse of the jumps is faster
than the estimate from linear theory.

7.2 The jump-diffusion model

In this subsection, we formulate a model that seeks to isolate the evolution of the finite
jumps, the main feature of the nonlinear coarsening dynamics. Let s, denote the discrete
slope

Wpt1 — Wn
snzw;w?:#, n=0,1,2,---,N —1. (7.12)

Taking differences of (2.25), we write the equivalent slope-evolution equations,

dsy _ F(snt1) = 2F(sn) + F(sp-1)
dt Ax? ’

1<n<N-2 (7.13)

Similarly, at the edges of the domain, n =0and n =N — 1,

dso _ Fls) = Flso)  dswo __ Flon-1) = Flow-a) (7.14)
di Azz dt Ag? ' '

Equations (7.14) are derived from the Dirichlet boundary conditions (2.26). In particular,
the equation for sy_; is obtained by differentiating the boundary condition constraint (3.2),
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in the form
N-2
SN—1 = — Z Sn, (715)
n=0

with respect to ¢ and using (7.13) to collapse the sum.

Note that equations (7.13), are a second-order accurate finite difference discretization of the
slope diffusion PDE (2.17):

ds 02
5 = w(F(s)). (7.16)
The jump in w,, is expressed by
Wni1 — Wy = SpAL. (7.17)

This quantity corresponds to a jump in w as Az — 0 only when s, is large, s, = O(N)
as N — oo. In the intermediate dynamics, we find that only large positive values of s, can
occur, with s, > snax, as was the case for the stable equilibrium solutions found in section 3.
Consequently, as was done in Section 6, points in the solution {w,} where the slope satisfies
Sn > Smax Will be referred to as jumps, and the remaining points with small slopes, s, < Smax,
will be called the background.

In Figure 18a, we show a typical numerical simulation with N = 500, at a time when there
are K = 20 jumps on 0 < x < 1. The evolution of a jump is controlled by the second
difference 62F (s,,) = F(sp11) — 2F (sn) + F(sn_1), which appears as the numerator of (7.14).
Specifically, whether a jump will grow or decay depends on if 62F (s,,) is positive or negative,
respectively. Figure 18a shows a portion of the solution w,, 0 < n < 180, containing seven
jumps (label them o4, 09, -+ ,07) and Figure 18b shows the corresponding flux F'(s,). Note
that the flux is continuous everywhere, and the first difference, 6 F(s,,) = F(sny1) — F(sn),
is piecewise constant with jumps corresponding to those of w,. Moreover, Figure 18b shows
that the second difference 62F is negative for jumps o and o, hence those jumps will decay
in amplitude. Also note that the jump labelled o4 is close to equilibrium, since locally F(s,,)
is nearly linear and hence §?F(0y4) is near zero (see Figure 18b).

Consider a solution of (7.13, 7.14) starting with K interior jumps at some initial time.
Numerical simulations suggest that the background, with s, < sy, equilibrates on a fast
time-scale, and thereafter evolves quasi-statically, being driven by the slower evolution of
the jumps. In particular, since the background is at quasi-static equilibrium, we deduce that
F(s,) must be approximately linear between jumps, as indicated in Figure 18b. We further
observe in this figure that F'(s,) appears continuous at the jumps. Consequently, the flux of
solution, F'(s,), is determined everywhere by the values of F(s,) at the jumps alone. With
these observations, we can formulate a closed system of equations for the evolution of the
jumps that is decoupled from the quasi-static evolution of the background.
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Let o), = s,, denote the slope at the k'™ jump. Taking F(s,) to be linear in n between jumps
yields the model

F(opy1) — F(og)
N1 — N

F(sy) = F(ox) + (n — ng) for np <n < ngyq. (7.18)

To specify this model for the flux to the left of the first jump, and to the right of the K
jump, define o9 = s¢ and oxy1 = sy_1. Then F(s,) is defined for all 0 < n < N —1 by
(7.18) in terms of oy for 0 < k£ < K. Since the jumps are assumed to be interior, both s
and sy_; are less than sp,.y, are part of the background, and hence evolve quasi-statically.
In particular, the rates of evolution for oy and ox 1 in (7.14) are of lower order than those
of the rates of evolution for the jumps {0} }. Balancing terms in (7.14) forces the conditions
that F'(s1) = F(so) and F(sy_2) = F(sy_1). Consequently, the slope of F(s,) adjacent to
each boundary is zero, and hence

F(O’o) = F(O’l), F(O'K_H) = F(O’K) (719)

After some manipulation, substitution of (7.18) into (7.20) leads to the equations

dO'k _ 1 (F(O']H_l)—F(O'k) . F(O’k)—F(O'k,l)

= 2<k<K-1 2
dt  Ax? )’ sks ’ (7.20)

Ng+1 — Nk N — Ng—1
and similarly including (7.19) gives equations for oy and ok :

@:F(Ug)—F(Ul) dO’K:_F(O'K)—F(O'K_l) (721)
dt (ng —mq1)Az?’ dt (ng —ng_1)Az? ’

This system is similar in form to (7.14), but it represents a vast reduction of the problem
when K < N — we have to consider only K coupled equations at the jumps, rather than
N equations at all of the points in the domain. Whereas (7.13) describes a finite difference
scheme for (7.16) on a uniform grid, (7.20) is a discretization of (7.16) on a non-uniform
grid, given by the positions of the jumps, {ny}.

It is perhaps worth considering the evolution of jumps in the context of the nonlinear diffusion
PDE (7.16) for the slope field s(z, t). If the solution w(z, t) of (2.10) contains a finite number
of jump discontinuities at locations z, then the slope, s = 0,w, is a distribution containing
delta-functions at x;. Assuming the jump locations ) are stationary (independent of t),
we find that 0;s also has delta functions at the jumps. Consequently, interpreting (7.16) in
the sense of distributions, we find that the flux F(s) is continuous in space and 0,F(s) is
piecewise continuous in space with jumps at z;. Moreover, at the jumps, we have

Oifw]y = [0:F(5)],

where [w], = w(z},t) —w(zy,t) denotes the ™ jump in w, and the right hand side denotes
the corresponding jump in 0,F(s). Thus, in the continuum version of the jump-diffusion

model (7.20), it is not clear how to express [w]; in terms of s, so the system is not closed.
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Fig. 18. (left) A portion of a solution {wy(tp)} with N = 500 containing K = 20 jumps, seven of
which are on 0 < z < 0.35. (right) A plot of the corresponding values of the flux function, F'(s,)
indicating the decaying jumps, where §2F(s) < 0.

This is in contrast with the discrete model, for which jumps in w, are related to s, through
equation (7.17).

We now justify the claim of separation of time-scales in the discrete model when K < N.
As described earlier, if the slopes {s,} for the background correspond to a smooth function
s(x,t) < Smax, then as N — oo, then (7.13) converges to the nonlinear forward-diffusion
equation (7.16) with time-scales independent of N. Hence ¢ = O(1) for the evolution of
transients in the background. In contrast, for large N, the jumps are o = O(N), and by
using the asymptotics of the flux for large s — oo, (2.15), in (7.20) yields the slow time-scale
for the evolution of the jumps as t = O(N). This observation was obtained in section 6.1 for
the decay rate of unstable jumps in the near-equilibrium case, (7.11).

We now briefly review the details of what happens as a jump collapses. Decay of a jump occurs
on the O(N) long time-scale if §2F(0y,) < 0; the slope decreases to a value with o} < Spax-
Local equilibrium will be achieved when §2F (o) = 0. As the evolution proceeds, the diffusion
coefficient, D(oy) = F'(oy) changes sign from negative to positive, as oy decreases through
Smax- Consequently, further local evolution resembles that of a forward parabolic equation,
serving to smooth out gradients to the background, s, ~ s.i; on the fast O(1) time scale.
Moreover, when a jump oy, collapses, then that grid point ny becomes part of the background,
and the system (7.20, 7.21) is reduced to a (K — 1)-dimensional system for the remaining
jumps. This model of the piecewise-in-time evolution of system (2.25) is supported by Figures
10, 11 and 17a, which show piecewise smooth dynamics punctuated by the collapses of jumps
at finite times. It is also appropriate to note that the reduced model (7.20) gives numerical
results that are indistinguishable from simulations of the full discrete model (7.13), apart
from short O(1) transients associated with jump collapse in the regime suiy < 0% < Smax-

The finite-time collapse of unstable jumps typically occurs one jump at a time, (see Fig-
ure 10b). In a further simplification of the reduced model, we show how to isolate the
evolution of a single jump, and show that the simplification leads to only small inaccuracies
in the simulation, and the possibility of increased understanding of the collapse mechanism.
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Fig. 19. (left) Comparison of the piecewise linear flux F'(s), (7.18), predicted by (7.22) after the
collapse of jump og with the actual solution. (right) Comparison of the decay of jump og predicted
by (7.22) with the actual evolution.

Let us assume that in the coarsening process, there is a separation in the timescales of the
successive collapses of the jumps {0} }. This assumption is valid if there is a separation in the
values of 02 F'(oy,) for the jumps oy, i.e. if —0?F(01) &~ —6?F (09) & —6%F(03) - - - < —0°F (o)
then o; will be the next jump to collapse; this is the case for o in Figure 18b. Then during
the finite time that the jump o; collapses to 0; — Smax, the remaining jumps will have
changed only slightly (see Figure 19a). Consequently, if we neglect the slow evolution of the
other jumps sy, then system (7.20) reduces to a single first-order ODE for o; while all of the
other oy, are held constant,

do; _ Aj — B;F(0y)

o N , (7.22)
where the constants A;, B; are given by
A = Floje) | Floj-) g Njpr =M1 (7.23)

Njt1—MN; Ny —Nj1 ’ (nj+1 - nj)("j - ”jfl)

Equation (7.22) may be integrated starting from the initial size of slope s; at time Tk, when
the solution has K jumps, to determine time Tx_;, when collapse has occurred, 0; = spax,
leaving a solution with K —1 jump discontinuities. If further we assume that all of the jumps
are equally spaced, with (nj1; —n;)Az = 1/K and the jumps neighboring o, are very near
equilibrium, F(o;_1) = F(0j+1) = F(Scrit), then (7.22) becomes

do; ., 2K

2N K sin acsin ¢
% 28 o) - F10) -

gj

(7.24)

where the second approximation results from the asymptotics of F(s) for large s, (2.15).
This equation has the approximate solution

o;(t) ~ \/4NK sinasin ¢ (T 1 —t), T <t <Tg_q, (7.25)

where Ty _1 is the collapse time. From Figure 19b, we see that (7.25) qualitatively captures
the nature of the finite time collapse of the jump. Figure 19 illustrates the use of the piecewise
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linear flux approximation (7.18) and equation (7.22) to calculate the collapse of the og jump
starting from the initial conditions given in Figure 18.

This simplified model (7.22) can be expected to approximately describe the dynamics in some
intermediate regime, 1 < K < N. As long as K < N, the piecewise linear approximation
(7.18) will describe the flux, but as K — 1, (7.22) can not hold, because there will be strong
coupling between jumps due to the boundary condition constraint (7.15). In practice, we
have observed that the long-term dynamics are very sensitive to the spatial coupling of the
jumps. A scaling law is observed for the number of jumps K as a function of time for systems
with large N. Equation (7.22) does not capture this, but the jump diffusion model (7.20,
7.21) does reproduce this behavior of the full system (2.25).

If we use the results of the reduced jump-diffusion model (7.22, 7.25) with the initial values
for the jump sizes obtained from the numerical simulations from Section 6, o;(Tx_1) =
O(N/K3/?). Then we obtain that the transition time from K to K — 1 jumps is

ATy = O(N/K?). (7.26)

Consequently, the cumulative time until only K jumps remain is given by the summation

Tk = i AT}, ~ O(N) fj k™ = O(N/K?), (7.27)

where the second summation can be expressed exactly in terms of the polygamma function
1] as R k% = WON) =y (K +1))/6 ~ K~3/3+ O(N~3, K~*). This result agrees with
the estimate K = O((N/t)'/?) from (6.3). It is not clear how to derive the scaling result for
0;(Tx_1) from (7.22) or (7.20).

In conclusion, we have shown that in the continuum limit, the slow timescale for evolution
in (2.25) diverges as the microscopic discretization lengthscale vanishes, Az = N~! — 0.
This singular behavior is a consequence of the asymptotic form of the non-monotone flux
function, F(s) for s — oo. Further work focusing on the influence of different forms of the
flux function F'(s) is being pursued.
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